[高二数学知识点总结]高二数学备考知识点归纳

时间:2019-07-10  来源:高二  阅读:

【导语】在现实竞争如此激烈的社会环境里想获得成功,你得先学会默默地做好自己的事,专注于某一点或某一方面,用经历和阅历积累,丰富自己的思想和知识,正如你羡慕别人在某些方面的特长,你可知道他们从小接受了这方面多少系统的训练,克服了多少训练中的困难。本站高二频道为你整理了《高二数学备考知识点归纳》,希望可以帮到你更好的学习!
15382126197834013.jpg

【篇一】

  1.求导法则:

  (c)/=0这里c是常数。即常数的导数值为0。

  (xn)/=nxn-1特别地:(x)/=1(x-1)/=()/=-x-2(f(x)±g(x))/=f/(x)±g/(x)(k?f(x))/=k?f/(x)

  2.导数的几何物理意义:

  k=f/(x0)表示过曲线y=f(x)上的点P(x0,f(x0))的切线的斜率。

  V=s/(t)表示即时速度。a=v/(t)表示加速度。

  3.导数的应用:

  ①求切线的斜率。

  ②导数与函数的单调性的关系

  已知(1)分析的定义域;(2)求导数(3)解不等式,解集在定义域内的部分为增区间(4)解不等式,解集在定义域内的部分为减区间。

  我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性。以下以增函数为例作简单的分析,前提条件都是函数在某个区间内可导。

  ③求极值、求最值。

  注意:极值≠最值。函数f(x)在区间[a,b]上的值为极大值和f(a)、f(b)中的一个。最小值为极小值和f(a)、f(b)中最小的一个。

  f/(x0)=0不能得到当x=x0时,函数有极值。

  但是,当x=x0时,函数有极值f/(x0)=0

  判断极值,还需结合函数的单调性说明。

  4.导数的常规问题:

  (1)刻画函数(比初等方法精确细微);

  (2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

  (3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

  2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

  3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

  九、不等式

  一、不等式的基本性质:

  注意:(1)特值法是判断不等式命题是否成立的一种方法,此法尤其适用于不成立的命题。

  (2)注意课本上的几个性质,另外需要特别注意:

  ①若ab>0,则。即不等式两边同号时,不等式两边取倒数,不等号方向要改变。

  ②如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论。

  ③图象法:利用有关函数的图象(指数函数、对数函数、二次函数、三角函数的图象),直接比较大小。

  ④中介值法:先把要比较的代数式与“0”比,与“1”比,然后再比较它们的大小

  二、均值不等式:两个数的算术平均数不小于它们的几何平均数。

  基本应用:①放缩,变形;

  ②求函数最值:注意:①一正二定三相等;②积定和最小,和定积。

  常用的方法为:拆、凑、平方;

  三、绝对值不等式:

  注意:上述等号“=”成立的条件;

  四、常用的基本不等式:

  五、证明不等式常用方法:

  (1)比较法:作差比较:

  作差比较的步骤:

  ⑴作差:对要比较大小的两个数(或式)作差。

  ⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和。

  ⑶判断差的符号:结合变形的结果及题设条件判断差的符号。

  注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。

  (2)综合法:由因导果。

  (3)分析法:执果索因。基本步骤:要证……只需证……,只需证……

  (4)反证法:正难则反。

  (5)放缩法:将不等式一侧适当的放大或缩小以达证题目的。

  放缩法的方法有:

  ⑴添加或舍去一些项,

  ⑵将分子或分母放大(或缩小)

  ⑶利用基本不等式,

  (6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。

  (7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;

  十、不等式的解法:

  (1)一元二次不等式:一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对进行讨论:

  (2)绝对值不等式:若,则;;

  注意:

  (1)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:

  ⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;

  (2).通过两边平方去绝对值;需要注意的是不等号两边为非负值。

  (3).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。

  (4)分式不等式的解法:通解变形为整式不等式;

  (5)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。

  (6)解含有参数的不等式:

  解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:

  ①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.

  ②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.

  ③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为(或更多)但含参数,要讨论。

  十一、数列

  本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前项和,则其通项为若满足则通项公式可写成.(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标.①函数思想:等差等比数列的通项公式求和公式都可以看作是的函数,所以等差等比数列的某些问题可以化为函数问题求解.

  ②分类讨论思想:用等比数列求和公式应分为及;已知求时,也要进行分类;

  ③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整

  体思想求解.

  (4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.

  一、基本概念:

  1、数列的定义及表示方法:

  2、数列的项与项数:

  3、有穷数列与无穷数列:

  4、递增(减)、摆动、循环数列:

  5、数列的通项公式an:

  6、数列的前n项和公式Sn:

  7、等差数列、公差d、等差数列的结构:

  8、等比数列、公比q、等比数列的结构:

  二、基本公式:

  9、一般数列的通项an与前n项和Sn的关系:an=

  10、等差数列的通项公式:an=a1+(n-1)dan=ak+(n-k)d(其中a1为首项、ak为已知的第k项)当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

  11、等差数列的前n项和公式:Sn=Sn=Sn=

  当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

  12、等比数列的通项公式:an=a1qn-1an=akqn-k

  (其中a1为首项、ak为已知的第k项,an≠0)

  13、等比数列的前n项和公式:当q=1时,Sn=na1(是关于n的正比例式);

  当q≠1时,Sn=Sn=

  三、有关等差、等比数列的结论

  14、等差数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m-S3m、……仍为等差数列。

  15、等差数列中,若m+n=p+q,则

  16、等比数列中,若m+n=p+q,则

  17、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m-S3m、……仍为等比数列。

  18、两个等差数列与的和差的数列、仍为等差数列。

  19、两个等比数列与的积、商、倒数组成的数列

  、、仍为等比数列。

  20、等差数列的任意等距离的项构成的数列仍为等差数列。

  21、等比数列的任意等距离的项构成的数列仍为等比数列。

  22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d

  23、三个数成等比的设法:a/q,a,aq;

  四个数成等比的错误设法:a/q3,a/q,aq,aq3

  24、为等差数列,则(c>0)是等比数列。

  25、(bn>0)是等比数列,则(c>0且c1)是等差数列。

  四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。

  26、分组法求数列的和:如an=2n+3n

  27、错位相减法求和:如an=(2n-1)2n

  28、裂项法求和:如an=1/n(n+1)

  29、倒序相加法求和:

  30、求数列的、最小项的方法:

  ①an+1-an=……如an=-2n2+29n-3

  ②an=f(n)研究函数f(n)的增减性

  31、在等差数列中,有关Sn的最值问题--常用邻项变号法求解:

  (1)当>0,d<0时,满足的项数m使得取值.

  (2)当<0,d>0时,满足的项数m使得取最小值。

  在解含绝对值的数列最值问题时,注意转化思想的应用。

  十二、平面向量

  1.基本概念:

  向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。

  2.加法与减法的代数运算:

  (1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2).

  向量加法与减法的几何表示:平行四边形法则、三角形法则。

  向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);

  3.实数与向量的积:实数与向量的积是一个向量。

  (1)||=||·||;

  (2)当a>0时,与a的方向相同;当a<0时,与a的方向相反;当a=0时,a=0.

  两个向量共线的充要条件:

  (1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.

  (2)若=(),b=()则‖b.

  平面向量基本定理:

  若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得=e1+e2.

  4.P分有向线段所成的比:

  设P1、P2是直线上两个点,点P是上不同于P1、P2的任意一点,则存在一个实数使=,叫做点P分有向线段所成的比。

  当点P在线段上时,>0;当点P在线段或的延长线上时,<0;

  分点坐标公式:若=;的坐标分别为(),(),();则(≠-1),中点坐标公式:.

  5.向量的数量积:

  (1).向量的夹角:

  已知两个非零向量与b,作=,=b,则∠AOB=()叫做向量与b的夹角。

  (2).两个向量的数量积:

  已知两个非零向量与b,它们的夹角为,则·b=||·|b|cos.

  其中|b|cos称为向量b在方向上的投影.

  (3).向量的数量积的性质:

  若=(),b=()则e·=·e=||cos(e为单位向量);

  ⊥b·b=0(,b为非零向量);||=;

  cos==.

  (4).向量的数量积的运算律:

  ·b=b·;()·b=(·b)=·(b);(+b)·c=·c+b·c.

  6.主要思想与方法:

  本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。

  十三、立体几何

  1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

  能够用斜二测法作图。

  2.空间两条直线的位置关系:平行、相交、异面的概念;

  会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法。

  3.直线与平面

  ①位置关系:平行、直线在平面内、直线与平面相交。

  ②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据。

  ③直线与平面垂直的证明方法有哪些?

  ④直线与平面所成的角:关键是找它在平面内的射影,范围是

  ⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理.三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线.

  4.平面与平面

  (1)位置关系:平行、相交,(垂直是相交的一种特殊情况)

  (2)掌握平面与平面平行的证明方法和性质。

  (3)掌握平面与平面垂直的证明方法和性质定理。尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直。

  (4)两平面间的距离问题→点到面的距离问题→

  (5)二面角。二面角的平面交的作法及求法:

  ①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形;

  ②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形。

  ③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法?

【篇二】

  一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件.

  二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例.

  三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式.

  四、三角函数(46课时17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4,单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式’7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16余弦定理;17斜三角形解法举例.

  五、平面向量(12课时,8个)1.向量2.向量的加法与减法3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移.

  六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式.

  七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题.9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程.

  八、圆锥曲线(18课时,7个)1椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质.九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5,直线和平面垂直的判与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球.

  十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理.2.排列;3.排列数公式’4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质.

  十一、概率(12课时,5个)1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验.选修Ⅱ(24个)

  十二、概率与统计(14课时,6个)1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归.

  十三、极限(12课时,6个)1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性.

  十四、导数(18课时,8个)1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8函数的值和最小值.

  十五、复数(4课时,4个)1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法答案补充高中数学有130个知识点,从前一份试卷要考查90个知识点,覆盖率达70%左右,而且把这一项作为衡量试卷成功与否的标准之一.这一传统近年被打破,取而代之的是关注思维,突出能力,重视思想方法和思维能力的考查.现在的我们学数学比前人幸福啊!!相信对你的学习会有帮助的,祝你成功!答案补充一试全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。二试1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。补充要求:面积和面积方法。几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点,重心。三角形内到三边距离之积的点,重心。几何不等式。简单的等周问题。了解下述定理:在周长一定的n边形的集合中,正n边形的面积。在周长一定的简单闭曲线的集合中,圆的面积。在面积一定的n边形的集合中,正n边形的周长最小。在面积一定的简单闭曲线的集合中,圆的周长最小。几何中的运动:反射、平移、旋转。复数方法、向量方法。平面凸集、凸包及应用。答案补充第二数学归纳法。递归,一阶、二阶递归,特征方程法。函数迭代,求n次迭代,简单的函数方程。n个变元的平均不等式,柯西不等式,排序不等式及应用。复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。圆排列,有重复的排列与组合,简单的组合恒等式。一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。3、立体几何多面角,多面角的性质。三面角、直三面角的基本性质。正多面体,欧拉定理。体积证法。截面,会作截面、表面展开图。4、平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。二元一次不等式表示的区域。三角形的面积公式。圆锥曲线的切线和法线。圆的幂和根轴。

[高二数学知识点总结]高二数学备考知识点归纳

https://m.shkuanshun.cn/gaozhong/54024/

推荐访问:高二数学下学期知识点 高二数学知识点大全
相关阅读 猜你喜欢
本类排行 本类最新